Molecular Cloning and Characterization of Carotenoid Pathway Genes and Carotenoid Content in Ixeris dentata var. albiflora.

نویسندگان

  • Chinreddy Subramanyam Reddy
  • Sang-Hoon Lee
  • Jeong Su Yoon
  • Jae Kwang Kim
  • Sang Won Lee
  • Mok Hur
  • Sung Cheol Koo
  • Jin Meilan
  • Woo Moon Lee
  • Jae Ki Jang
  • Yoonkang Hur
  • Sang Un Park
  • And Yeon Bok Kim
چکیده

Ixeris dentata var. albiflora is considered as a potential therapeutic agent against mithridatism, calculous, indigestion, pneumonia, hepatitis, and tumors as well as good seasoned vegetable in Far East countries. Phytoene synthase (PSY), phytoene desaturase (PDS) ξ-carotene desaturase (ZDS), lycopene β-cyclase (LCYB), lycopene ε-cyclase (LCYE), ε-ring carotene hydroxylase (CHXB), and zeaxanthin epoxidase (ZDS) are vital enzymes in the carotenoid biosynthesis pathway. We have examined these seven genes from I. dentata that are participated in carotenoid biosynthesis utilizing an Illumina/Solexa HiSeq 2000 platform. In silico analysis of the seven deduced amino acid sequences were revealed its closest homology with other Asteracea plants. Further, we explored transcript levels and carotenoid accumulation in various organs of I. dentata using quantitative real time PCR and high-performance liquid chromatography, respectively. The highest transcript levels were noticed in the leaf for all the genes while minimal levels were noticed in the root. The maximal carotenoid accumulation was also detected in the leaf. We proposed that these genes expressions are associated with the accumulation of carotenoids. Our findings may suggest the fundamental clues to unravel the molecular insights of carotenoid biosynthesis in various organs of I. dentata.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of Genes Related to Phenylpropanoid Biosynthesis in Different Organs of Ixeris dentata var. albiflora.

Members of the genus Ixeris have long been used in traditional medicines as stomachics, sedatives, and diuretics. Phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-coumarate: coenzyme-A (CoA) ligase (4CL), chalcone synthase (CHS), and dihydroflavonol 4-reductase (DFR) are important enzymes in the phenylpropanoid pathway. In this study, we analyzed seven genes from Ixeris denta...

متن کامل

In silico identification of miRNAs and their target genes and analysis of gene co-expression network in saffron (Crocus sativus L.) stigma

As an aromatic and colorful plant of substantive taste, saffron (Crocus sativus L.) owes such properties of matter to growing class of the secondary metabolites derived from the carotenoids, apocarotenoids. Regarding the critical role of microRNAs in secondary metabolic synthesis and the limited number of identified miRNAs in C. sativus, on the other hand, one may see the point how the characte...

متن کامل

Molecular genetics of the carotenoid biosynthesis pathway in plants and algae

During recent years genes for more than 20 different carotenogenic enzymes have been cloned from various organisms: bacteria, cyanobacteria, fungi, algae and plants. This accomplishment has provided new molecular tools to study the enzymes and yielded new information on their structure, function and regulation. We describe here the recent progress in the molecular genetics of the carotenoid bio...

متن کامل

Timing and biosynthetic potential for carotenoid accumulation in genetically diverse germplasm of maize.

Enhancement of the carotenoid biosynthetic pathway in food crops benefits human health and adds commercial value of natural food colorants. However, predictable metabolic engineering or breeding is limited by the incomplete understanding of endogenous pathway regulation, including rate-controlling steps and timing of expression in carotenogenic tissues. The grass family (Poaceae) contains major...

متن کامل

Carotenoid synthesis and function in plants: Insights from mutant studies in Arabidopsis*

From a molecular and genetic perspective, the decade of the 1990s was truly unparalleled in the study of carotenoids. A combination of new technologies and approaches allowed the isolation of bacterial carotenoid biosynthetic genes and the subsequent isolation of higher plant homologs based on colour complementation in Escherichia coli. These genes provided a basis for molecular and transgenic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 22 9  شماره 

صفحات  -

تاریخ انتشار 2017